

American Society of Hematology 2021 L Street NW, Suite 900, Washington, DC 20036

Phone: 202-776-0544 | Fax 202-776-05

CD19-directed CART Therapy for T cell/Histiocyte Rich Large B-cell Lymphoma

Tracking no: ADV-2024-013863R1

Priyanka Pophali (University of Wisconsin Carbone Cancer Center, United States) Joshua Fein (Weill Cornell Medicine/NewYork Presbyterian Hospital, United States) Kwang Ahn (Medical College of Wisconsin, United States) Molly Allbee-Johnson (Medical College of Wisconsin, United States)
Nausheen Ahmed (University of Kansas Cancer Center, United States) Farrukh Awan (UT Southwestern, United States) Shatha Farhan (Henry Ford Healthsystem, United States) Natalie Grover (Lineberger Comprehensive Cancer Center, University of North Carolina, United States) Talal Hilal (Mayo Clinic, United States) Madiha Iqbal (Mayo Clinic Florida, United States) Joeseph Maakaron (University of Minnesota, United States) Dipenkumar Modi (Barbara Ann Karmanos Cancer Institute, Wayne State University, United States) Elham Nasrollahi (University of Pittsburgh Medical Center in Central PA, United States) Levanto Schachter (Oregon Health and Science University, United States) Craig Sauter (Cleveland Clinic, United States) Mehdi Hamadani (Medical College of Wisconsin, United States) Alex Herrera (City of Hope, United States) Roni Shouval (Memorial Sloan Kettering Cancer Center, United States) Mazyar Shadman (Fred Hutchinson Cancer Research Center, United States)

Abstract:

T-cell/histiocyte-rich large B-cell lymphoma (THRLBCL) is a rare histologic variant of LBCL. Limited data regarding CD19-directed chimeric antigen receptor T-cell (CART) therapy in relapsed/refractory (R/R) THRLBCL suggest poor efficacy. We investigated CART outcomes for R/R THRLBCL through the CIBMTR registry. A total of 58 adult patients with R/R THRLBCL who received commercial CD19-CART between 2018-2022 were identified. Most patients (67%) had early relapse of disease (45% primary refractory) with a median of 3 (range: 1-7) prior therapies and were treated with Axicabtagene ciloleucel (69%). At median follow-up of 23 months post-CART, 2-year overall and progression-free survival were 42% (95% CI: 27-57) and 29% (95% CI: 17-43), respectively. In univariable analysis, poor performance status pre-CART was associated with higher mortality (HR 2.35, 95%CI 1.02-5.5). The 2-year cumulative incidences of relapse/progression and non-relapse mortality were 69% and 2%, respectively. Grade {greater than or equal to}3 CRS and ICANS occurred in 7% and 15% of patients, respectively. In this largest analysis of CD19-CART for R/R THRLBCL, approximately 30% of patients were alive and progression-free 2 years post-CART. Despite a high incidence of progression (69% at 2 years), these results suggest a subset of patients with R/R THRLBCL may have durable responses with CART.

Conflict of interest: COI declared - see note

COI notes: Mehdi Hamadani reports research support/Funding: Takeda Pharmaceutical Company; ADC Therapeutics; Spectrum Pharmaceuticals; Astellas Pharma. Consultancy: ADC Therapeutics, Omeros, CRISPR, BMS, Kite, AbbVie, Caribou, Genmab. Speaker's Bureau: ADC Therapeutics, AstraZeneca, Bei Gene, Kite. DMC: Inc, Genentech, Myeloid Therapeutics, CRISPR Craig Sauter has served as a paid consultant: Kite/a Gilead Company, Celgene/BMS, Gamida Cell, Karyopharm Therapeutics, Ono Pharmaceuticals, MorphoSys, CSL Behring, Syncopation Life Sciences, CRISPR Therapeutics, Ipsen Biopharmaceuticals, Inc. and GSK. He has received research funds for clinical trials from: Juno Therapeutics, Celgene/BMS, Bristol-Myers Squibb, Precision Biosciences, Actinium Pharmaceuticals, Sanofi-Genzyme and NKARTA. Mazyar Shadman reports Consulting, Advisory Boards, steering committees or data safety monitoring committees: AbbVie, Genentech, AstraZeneca, Janssen, Beigene, Bristol Myers Squibb, Morphosys/Incyte, Kite Pharma, Eli Lilly, Mustang Bio, Fate therapeutics, Nurix, Merck. Research Funding: Mustang Bio, Genentech, AbbVie, Beigene, AstraZeneca, Genmab, Morphosys/Incyte, Vincerx .Stock options: Koi Biotherapeutics. Employment: Bristol Myers Squibb (spouse) Joseph Maakaron reports grants or contracts from Gilead, Atara, CRISPR, Precision Biosciences, and Scripps Research Institute. Talal Hilal reports consulting fees from BeiGene. Priyanka Pophali reports consulting fees from SeaGen.

Preprint server: No;

Author contributions and disclosures: P.P., J.A.F., R.S., M.S., A.H., and M.H. conceived and designed the paper. M.A.J. and M.H. collected and assembled the data. Data analysis was performed by M.H., M.A.J., and K.W.A. P.P. wrote the initial draft of the manuscript, and all authors contributed to revising the manuscript.

Non-author contributions and disclosures: No;

Agreement to Share Publication-Related Data and Data Sharing Statement: The Center for International Blood and Marrow Transplant Research (CIBMTR) supports accessibility of research in accord with the National Institutes of Health Data Sharing Policy and the National Cancer Institute Cancer Moonshot Public Access and Data Sharing Policy. The CIBMTR only releases deidentified data sets that comply with all relevant global regulations regarding privacy and confidentiality.

Clinical trial registration information (if any):

- 1 Title: CD19-directed CART Therapy for T cell/Histiocyte Rich Large B-cell Lymphoma
- 2
- 3 Running title: CART for THRLBCL
- 4 **Authors:** Priyanka A. Pophali^{1*}, Joshua A. Fein^{2*}, Kwang W. Ahn³, Molly Allbee-Johnson⁴,
- 5 Nausheen Ahmed⁵, Farrukh T. Awan⁶, Shatha Farhan⁷, Natalie S. Grover⁸, Talal Hilal⁹, Madiha
- 6 Iqbal¹⁰, Joseph Maakaron¹¹, Dipenkumar Modi¹², Elham Nasrollahi¹³, Levanto G. Schachter¹⁴,
- 7 Craig Sauter¹⁵, Mehdi Hamadani ^{4,16}, Alex Herrera¹⁷, Roni Shouval^{18,19}, Mazyar Shadman²⁰
- 8 *Authors contributed equally and share first authorship.

11

12

13

14

15

16

17

18

19

20

21

22

23

25

26

30

31

32

33

34

35

36

37

38

39

40

Affiliations:

- 1. Division of Hematology, Medical Oncology & Palliative Care, University of Wisconsin, Carbone Cancer Center, Madison, WI
- 2. Division of hematology and Oncology, Weill Cornell Medicine, New York, NY
- Division of Biostatistics, Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, WI
 - 4. Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, WI
 - 5. Division of Hematologic Malignancies and Cellular Therapeutics, The University of Kansas Cancer Center
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center
 - 7. Henry Ford Health System Stem Cell Transplant & Cellular Therapy Program
 - 8. University of North Carolina
- 9. Mayo Clinic Arizona
 - 10. Mayo Clinic Florida
 - 11. University of Minnesota
- 27 12. Karmanos Cancer Institute, Wayne State University
- 13. Department of Internal Medicine, University of Pittsburgh Medical Center in Central Pa.,
 Harrisburg, PA
 - 14. University of California Los Angeles
 - 15. Blood and Marrow Transplant program, Department of Hematology and Medical Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, Ohio, USA.
 - 16. BMT & Cellular Therapy Program, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
 - 17. Division of Lymphoma, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA
 - 18. Department of Medicine, Adult Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center, New York, NY
 - 19. Medicine, Weill Cornell Medical College, New York, NY
 - 20. Fred Hutch Cancer Center and University of Washington, Seattle, WA
- 41 Corresponding Author: Mehdi Hamadani, MD, Center for International Blood and Marrow
- 42 Transplant Research, Medical College of Wisconsin, 9200 W. Wisconsin Avenue, Suite C5500,
- 43 Milwaukee, WI 53226, USA; Phone: 414-805-0643; Fax: 414-805-0714; E-mail:
- 44 mhamadani@mcw.edu

Data sharing statement: The Center for International Blood and Marrow Transplant Research (CIBMTR) supports accessibility of research in accord with the National Institutes of Health Data Sharing Policy and the National Cancer Institute Cancer Moonshot Public Access and Data Sharing Policy. The CIBMTR only releases deidentified data sets that comply with all relevant global regulations regarding privacy and confidentiality.

51

52 Abstract word count: 196 53 Article word count: 1585

54 Tables: 155 Figures: 2

56 Supplemental Tables: 3

Abstract:

59

75

CART.

60 T-cell/histiocyte-rich large B-cell lymphoma (THRLBCL) is a rare histologic variant of LBCL. 61 Limited data regarding CD19-directed chimeric antigen receptor T-cell (CART) therapy in 62 relapsed/refractory (R/R) THRLBCL suggest poor efficacy. We investigated CART outcomes for 63 R/R THRLBCL through the CIBMTR registry. A total of 58 adult patients with R/R THRLBCL 64 who received commercial CD19-CART between 2018-2022 were identified. Most patients (67%) 65 had early relapse of disease (45% primary refractory) with a median of 3 (range: 1-7) prior 66 therapies and were treated with Axicabtagene ciloleucel (69%). At median follow-up of 23 67 months post-CART, 2-year overall and progression-free survival were 42% (95% CI: 27-57) and 68 29% (95% CI: 17-43), respectively. In univariable analysis, poor performance status pre-CART 69 was associated with higher mortality (HR 2.35, 95%CI 1.02-5.5). The 2-year cumulative 70 incidences of relapse/progression and non-relapse mortality were 69% and 2%, respectively. 71 Grade ≥3 CRS and ICANS occurred in 7% and 15% of patients, respectively. In this largest 72 analysis of CD19-CART for R/R THRLBCL, approximately 30% of patients were alive and 73 progression-free 2 years post-CART. Despite a high incidence of progression (69% at 2 years), 74 these results suggest a subset of patients with R/R THRLBCL may have durable responses with

INTRODUCTION:

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

T-cell/histiocyte-rich large B-cell lymphoma (THRLBCL) is a rare histologic variant that comprises <10% of LBCL and is classified as a separate entity based on the morphologically distinct appearance (1). The 5th edition of WHO classification considers THRLBCL at the extreme end of a spectrum of growth patterns of nodular lymphocyte predominant Hodgkin lymphoma (NLPHL) with a more aggressive clinical behavior (2). NLPHL and THRLBCL also share highly recurrent genetic lesions supporting a close relationship(3, 4) and distinguishing between these entities can be challenging. Due to limited available evidence regarding subtypespecific outcomes in patients with THRLBCL, they are managed like diffuse LBCL (DLBCL) in the frontline and relapsed settings. A study of the tumor microenvironment (TME) in THRLBCL biopsy samples identified PD-1/PD-L1 signaling as a possible pathogenic mechanism and driver of immune escape (5). Although retrospective studies in the rituximab era have reported survival rates comparable to DLBCL with intensive chemo-immunotherapy (6, 7), the treatment of relapsed disease remains an unmet need due to poor outcomes (8). While CD19-directed chimeric antigen receptor T-cell (CART) therapy has shown efficacy in relapsed/refractory (R/R) DLBCL (9-12), its role in THRLBCL remains largely undefined. In published case series of patients with R/R THRLBCL, almost all patients experienced early treatment failure post-CART infusion (8, 13). These reports have brought into question the role of anti-CD19 CART therapy in R/R THRLBCL, especially as we have learned more about its unique TME. Therefore, we investigated the outcomes of patients with R/R THRLBCL treated with FDA-approved commercial CART in the real world through the Center for International Blood and Marrow Transplant Research (CIBMTR) registry.

<u>METHODS</u>

Data source

The CIBMTR is a working group comprised of over 380 transplantation centers worldwide that provide data regarding cellular therapies to a statistical center at the Medical College of Wisconsin (MCW). Data quality is augmented through computerized affirmation of discrepancies, physicians' review of submitted data, and on-site audits of participating centers. Observational studies are conducted by the CIBMTR in compliance with all pertinent federal regulations with regard to protection of human research participants. All patients included in this analysis have provided written consent for research. The Institutional Review Board of MCW has approved this study. Patient provide informed consent for their data to be reported to CIBMTR.

Patients

Adult patients (≥18 years) with THRLBCL who received FDA-approved commercial CD19-directed CART products (axicabtagene ciloleucel or axi-cel, tisagenlecleucel or tisa-cel, lisocabtagene maraleucel or liso-cel) as their first cell therapy infusion between 2018 and 2022 were identified in the CIBMTR registry. Patients were excluded if they had received prior adoptive cellular therapy, not consented for research, or treated at embargoed or European Union centers.

Definitions and endpoints

Overall survival (OS) was the primary outcome. Patients alive without evidence of disease relapse or progression were censored at last follow-up. Death from any cause was considered an event for OS analysis. Secondary outcomes included progression-free survival (PFS), cumulative incidence of progression/relapse (CIP/R), non-relapse mortality (NRM), incidence of cytokine release syndrome (CRS) and immune-effector-cell-associated neurologic syndrome (ICANS). For PFS, progression/relapse or death from any cause were considered events. NRM was defined as death without evidence of prior lymphoma progression/relapse; relapse was

considered a competing risk. CIP/R was defined as relapsed lymphoma after CART; NRM was considered a competing risk. Bridging was defined as any therapy, including radiation, administered between apheresis and CART infusion, or patients' last line of treatment before CART if it was continued after apheresis. Disease response to last line of therapy at the time before CART was defined using the Lugano Classification(14, 15).

Statistical analysis

Baseline characteristics of the study population were described. CRS and ICANS were reported according to the consensus ASTCT criteria (16). Kaplan-Meier estimates were used for OS and PFS. Forest plots were created to present hazard ratios and their 95% confidence intervals based on the univariable Cox model. All statistical analyses were performed using SAS version 9.4 (SAS Institute, Cary, NC).

RESULTS

A total of 58 patients from 37 centers met the study inclusion criteria and were included in the analysis. Baseline patient and disease characteristics are summarized in Table 1. Prior to CART, 17 (29%) patients had bulky disease (>5 cm), and 12 (21%) had bone marrow involvement. The median age at CART infusion was 49 years (range: 19-76), with 12 patients (21%)>65 years. Patients were predominately male (79%), white (69%) and non-Hispanic/non-Latino (88%). One-third of patients (N=19) had a comorbidity score(17) of ≥3 and 24 (41%) had a Karnofsky performance status (KPS) <90. Most patients (N=39, 67%) had early relapse of TCHRBCL (within 12 months of first-line therapy), including 26 (45%) with primary refractory disease. The median number of prior therapies was 3 (range: 1-7), which included 21 (36%) patients with prior autologous stem cell transplantation (SCT) and 1 (2%) patient with prior allogeneic SCT.

Axi-cel was the predominant CART product (N=40, 69%), followed by Tisa-cel (N=15, 26%) and
liso-cel (N=3, 5%). Bridging therapy was reported in 18 (31%) patients, most commonly multi- or
single-agent chemotherapy (23%). Almost all patients (93%) had active disease pre-CART; only
4 patients were in complete remission (CR).
CRS was reported to occur in 40 (69%) patients: 26 (45%) grade 1, 10 (17%) grade 2, 2 (3%)
grade 3, and 1 (1.7%) each grade 4 and 5. ICANS was reported in 17 (29%) patients: 5 (9%)
grade 1, 3 (5%) grade 2, 4 (7%) grade 3, 5 (9%) grade 4 (Supplemental Table 1). By day 100
post-CART, best overall response rate (ORR) was 50% with 28% CR and 22% partial
responses (PR). ORR and CR rates were similar between CART products (Supplemental Table
2).
With a median follow-up of 23 months (range: 2-48) from CART infusion, 2-year OS was 42%
(95% CI: 27-57), and PFS was 29% (95% CI: 17-43; Figure 1). Among patients who achieved a
CR as of day 100, the 2-year cumulative incidence of relapse was 33% (95% CI: 5-71%),
corresponding to a 2-year OS and PFS among these patients of 92% (95% CI: 73-100%) and
67% (95% CI: 32-94%), respectively. Considering only those patients who were not already in
CR at infusion (n = 54), the 2-year OS and PFS were 39% (95% CI: 24-56) and 25% (95% CI:
12-40%), respectively.
In a univariable analysis, there were no significant associations with PFS or OS except KPS<90
pre-CART infusion, which was associated with significantly higher risk for mortality HR 2.37
(95% CI 1.02-5.5) (Figure 2). The 2-year CIP/R was 69% (95% CI: 55-82) and NRM was 2%
(95% CI: 0-8). A total of 30 deaths were reported during the follow-up period, with lymphoma
recurrence/progression, seen in 23 (77%) patients, being the most common cause of death

DISCUSSION

(Supplemental Table 3).

THRLBCL is a rare aggressive histologic subtype of LBCL. The pivotal clinical trials that led to the approval of CART products (*axi-cel*, *tisa-cel*, *liso-cel*) predominantly enrolled patients with the DLBCL, NOS histology(11, 12, 18). CD19-directed CART can be used for treating patients with R/R THRLBCL; however, its therapeutic efficacy is not well established. In this largest study to date of R/R THRLBCL treated with CART therapy, we found that nearly 30% of patients were alive and progression-free 2-years post-CART. The day-100 post-CART ORR and CR rates were 50% and 28%, respectively. Prior real-world analysis from the CIBMTR of patients treated with *axi-cel*(19) and *tisa-cel*(20) for R/R LBCL have reported higher day-100 ORR 60-73% and CR rates 44-56% but similar 2-year PFS 28-36% and OS 44-45%. Thus, post-CART outcomes of patients with R/R THRLBCL overall appear potentially less favorable than DLBCL but some patients do experience durable responses.

As our understanding of the TME of THRLBCL increases, future therapeutic options may emerge. Griffin et al. found that malignant THRLBCL B-cells can have PDL1/PDL2 copy gain or amplification in 64% of cases associated with increased PD-L1 expression. Their study also reported clinical responses to PD-1 blockade in 3 of 5 patients with R/R THRLBCL, including 2 CR and 1 PR (5). A multi-center case series by Trujillo et al. reported that 9 out of 9 patients with THRLBCL had progressive disease by day-90 post-CART (13). They noted evidence of adequate CART expansion in 3/3 cases studied and CD19 expression remained intact on 5/5 assessable cases on progression post-CART. The authors observed high co-expression of PD-1 and observed objective responses in 2 out of 5 patients treated with anti-PD-1 therapy post-CART progression. Thus, they hypothesized that THRLBCL is inherently CART-resistant due to its unique TME. Checkpoint inhibitor therapy with anti-PD-1 antibodies is uncommonly utilized for patients with relapsed aggressive LBCL due to low efficacy, including in the post-CART setting (21, 22). However, it is possible that in certain histologies such as THRLBCL in which there is a biological rationale, combining PD1 blockade with CD19-CART may be a reasonable

204 approach to try and overcome CAR-T resistance. Trials are currently underway to investigate 205 this strategy (NCT05934448). 206 207 Our study has limitations inherent to real-world studies, such as lack of central confirmation of 208 pathologic diagnosis (including history of NLPHL), missing details on disease burden (e.g. LDH) 209 as well as bridging and subsequent therapies post-CART progression, day-30 post-CART 210 response, duration of response and loss to follow-up. However, this is the largest cohort of R/R 211 THRLBCL treated with CART therapy with 93% and 86% patients having 1- and 2-year post-212 CART follow-up, respectively. 213 214 In summary, our study found that ~30% of patients with R/R THRLBCL may have durable 215 responses with CART indicating that CD19-directed CART remains a potentially curative 216 therapeutic option for this rare disease. However, the risk of progression remains high. Current

research is evaluating combination strategies with anti-PD1 antibodies to improve outcomes for

217

218

patients with THRLBCL.

Δ	CK	N	OM	/I	FD	GF	MF	NTS:

220	The CIBMTR is supported primarily by Public Health Service U24CA076518 from the National
221	Cancer Institute (NCI), the National Heart, Lung and Blood Institute (NHLBI) and the National
222	Institute of Allergy and Infectious Diseases (NIAID); HHSH250201700006C from the Health
223	Resources and Services Administration (HRSA); and N00014-20-1-2705 and N00014-20-1-
224	2832 from the Office of Naval Research; Support is also provided by Be the Match Foundation,
225	the Medical College of Wisconsin, the National Marrow Donor Program, and from the following
226	commercial entities: Actinium Pharmaceuticals, Inc.; Adienne SA; Allovir, Inc.; Amgen, Inc.;
227	Angiocrine Bioscience; Astellas Pharma US; bluebird bio, Inc.; Bristol Myers Squibb Co.;
228	Celgene Corp.; CSL Behring; CytoSen Therapeutics, Inc.; Daiichi Sankyo Co., Ltd.;
229	ExcellThera; Fate Therapeutics; Gamida-Cell, Ltd.; Genentech Inc; Incyte Corporation;
230	Janssen/Johnson & Johnson; Jazz Pharmaceuticals, Inc.; Kiadis Pharma; Kite, a Gilead
231	Company; Kyowa Kirin; Legend Biotech; Magenta Therapeutics; Merck Sharp & Dohme Corp.;
232	Millennium, the Takeda Oncology Co.; Miltenyi Biotec, Inc.; Novartis Pharmaceuticals
233	Corporation; Omeros Corporation; Oncoimmune, Inc.; Orca Biosystems, Inc.; Pfizer, Inc.;
234	Pharmacyclics, LLC; Sanofi Genzyme; Stemcyte; Takeda Pharma; Vor Biopharma; Xenikos BV.
235	RS is supported in part through the National Institutes of Health (NIH)/National Cancer Institute
236	(NCI) Cancer Center Support Grant P30 CA008748 and an NIH-NCI K-award (K08CA282987).

237	AUTHOR CONTRIBUTIONS:
238	Conception and design: Priyanka Pophali, Joshua Fein, Roni Shouval, Mazyar Shadman, Alex
239	Herrera and Mehdi Hamadani
240	Financial support: CIBMTR
241	Collection and assembly of data: Mariam Allbee-Johnson and Mehdi Hamadani
242	Data analysis: Mehdi Hamadani, Marian Allbee-Johnson & Kwang W. Ahn.
243	Interpretation: All authors.
244	Manuscript writing: First draft prepared by Priyanka Pophali. All authors helped revise the
245	manuscript.
246	Final approval of manuscript: All authors

248	Mehdi Hamadani reports research support/Funding: Takeda Pharmaceutical Company; ADC
249	Therapeutics; Spectrum Pharmaceuticals; Astellas Pharma. Consultancy: ADC Therapeutics,
250	Omeros, CRISPR, BMS, Kite, AbbVie, Caribou, Genmab, Autolus. Speaker's Bureau: ADC
251	Therapeutics, AstraZeneca, Bei Gene, Kite. DMC: Inc, Genentech, Myeloid Therapeutics,
252	CRISPR
253	Craig Sauter has served as a paid consultant: Kite/a Gilead Company, Celgene/BMS, Gamida
254	Cell, Karyopharm Therapeutics, Ono Pharmaceuticals, MorphoSys, CSL Behring, Syncopation
255	Life Sciences, CRISPR Therapeutics, Ipsen Biopharmaceuticals, Inc. and GSK. He has
256	received research funds for clinical trials from: Juno Therapeutics, Celgene/BMS, Bristol-Myers
257	Squibb, Precision Biosciences, Actinium Pharmaceuticals, Sanofi-Genzyme, Cargo
258	Therapeutics and NKARTA.
259	
260	Mazyar Shadman reports Consulting, Advisory Boards, steering committees or data safety
261	monitoring committees: AbbVie, Genentech, AstraZeneca, Janssen, Beigene, Bristol Myers
262	Squibb, Morphosys/Incyte, Kite Pharma, Eli Lilly, Mustang Bio, Fate therapeutics, Nurix, Merck.
263	Research Funding: Mustang Bio, Genentech, AbbVie, Beigene, AstraZeneca,
264	Genmab, Morphosys/Incyte, Vincerx .Stock options: Koi Biotherapeutics. Employment: Bristol
265	Myers Squibb (spouse)
266	
267	Joseph Maakaron reports grants or contracts from Gilead, Atara, CRISPR, Precision
268	Biosciences, and Scripps Research Institute.
269	
270	Talal Hilal reports consulting fees from BeiGene.

271

Disclosure of conflict of interest:

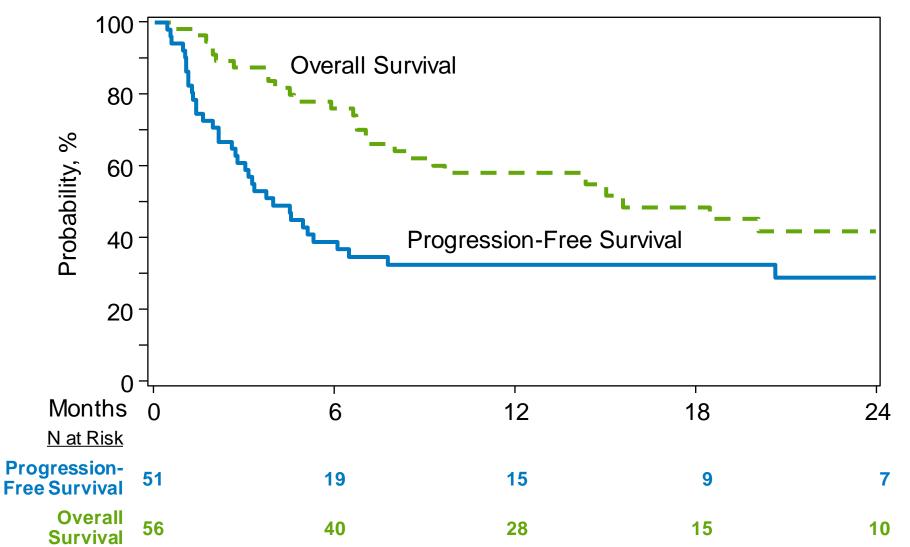
272	Priyanka Pophali reports consulting fees from SeaGen.
273	
274	Natalie Grover reports consulting fees from Kite, BMS, Seagen, ADC Therapeutics, Caribou
275	Biosciences and participation on data safety monitoring board or advisory board for Novartis.
276	
277	Levanto Schachter reports serving on a data safety monitoring board for an IIT at OHSU
278	Myeloma group without associated payments.
279	
280	Farrukh Awan reports consulting fees from Genentech, Astrazeneca, Abbvie, Janssen,
281	Pharmacyclics, Gilead sciences, Kite pharma, Celgene, Karyopharm, MEI Pharma, Verastem,
282	Incyte, Beigene, Johnson and Johnson, Dava Oncology, BMS, Merck, Cardinal Health, ADCT
283	therapeutics, Loxo Oncology, Adaptive Biotechnologies, Genmab, Epizyme, Caribou
284	Biosciences, Cellecter Bisosciences. He has participated on a data safety monitoring board or
285	advisory board for Ascentage and Astra Zaneca.
286	
287	Dipenkumar Modi reports consulting fees from AstraZaneca (self and spouse), honoraria from
288	Beigene, participation in data safety monitoring board or advisory board for Genmab, ADC
289	therapeutics, Seagen and Genentech (spouse).
290	
291	Nausheen Ahmed reports consulting fees and travel support from Kite/Gilead and honoraria
292	from Nebraska Medical Oncology.
293	
294	The other authors reported no conflicts of interest to disclose.
295	

298 References

- 299 1. Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, et al. The 2016
- revision of the World Health Organization classification of lymphoid neoplasms. Blood.
- 301 2016;127(20):2375-90.
- 302 2. Alaggio R, Amador C, Anagnostopoulos I, Attygalle AD, Araujo IBO, Berti E, et al. The
- 5th edition of the World Health Organization Classification of Haematolymphoid Tumours:
- 304 Lymphoid Neoplasms. Leukemia. 2022;36(7):1720-48.
- 305 3. Hartmann S, Doring C, Jakobus C, Rengstl B, Newrzela S, Tousseyn T, et al. Nodular
- 306 lymphocyte predominant hodgkin lymphoma and T cell/histiocyte rich large B cell lymphoma--
- endpoints of a spectrum of one disease? PLoS One. 2013;8(11):e78812.
- 308 4. Schuhmacher B, Bein J, Rausch T, Benes V, Tousseyn T, Vornanen M, et al. JUNB,
- 309 DUSP2, SGK1, SOCS1 and CREBBP are frequently mutated in T-cell/histiocyte-rich large B-
- 310 cell lymphoma. Haematologica. 2019;104(2):330-7.
- 5. Griffin GK, Weirather JL, Roemer MGM, Lipschitz M, Kelley A, Chen PH, et al. Spatial
- 312 signatures identify immune escape via PD-1 as a defining feature of T-cell/histiocyte-rich large
- 313 B-cell lymphoma. Blood. 2021;137(10):1353-64.
- 314 6. Robin ET DE, Batlevi CL et al. Favorable Outcomes Among Patients with T-
- 315 Cell/Histiocyte-Rich Large B-Cell Lymphoma Treated with Higher-Intensity Therapy in the
- 316 Rituximab Era. Blood. 2020;136:36-8.
- 7. Ollila TA, Reagan JL, Olszewski AJ. Clinical features and survival of patients with T-
- 318 cell/histiocyte-rich large B-cell lymphoma: analysis of the National Cancer Data Base. Leuk
- 319 Lymphoma. 2019;60(14):3426-33.
- Nair R, Ogundipe I, Gunther J, Medeiros LJ, Jain P, Nastoupil LJ, et al. Outcomes in
- 321 Patients with Relapsed Refractory T-Cell/Histiocyte-Rich Large B-Cell Lymphoma Treated with
- 322 CAR-T Cell Therapies or Salvage Chemotherapy a Single-Institution Experience. Blood.
- 323 2023;142(Supplement 1):6327-.

- 324 9. Kanate AS, Majhail N, DeFilipp Z, Dhakal B, Dholaria B, Hamilton B, et al. Updated
- 325 Indications for Immune Effector Cell Therapy: 2023 Guidelines from the American Society for
- 326 Transplantation and Cellular Therapy. Transplant Cell Ther. 2023;29(10):594-7.
- 327 10. Epperla N, Kumar A, Abutalib SA, Awan FT, Chen YB, Gopal AK, et al. ASTCT Clinical
- 328 Practice Recommendations for Transplantation and Cellular Therapies in Diffuse Large B Cell
- 329 Lymphoma. Transplant Cell Ther. 2023;29(9):548-55.
- 11. Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DB, Jacobson CA, et al.
- 331 Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma. N Engl J
- 332 Med. 2017;377(26):2531-44.
- 333 12. Abramson JS, Palomba ML, Gordon LI, Lunning MA, Wang M, Arnason J, et al.
- Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas
- 335 (TRANSCEND NHL 001): a multicentre seamless design study. Lancet. 2020;396(10254):839-
- 336 52.
- 13. Trujillo JA, Godfrey J, Hu Y, Huang J, Smith SM, Frigault MJ, et al. Primary resistance to
- 338 CD19-directed chimeric antigen receptor T-cell therapy in T-cell/histiocyte-rich large B-cell
- 339 lymphoma. Blood. 2021;137(24):3454-9.
- 340 14. Cheson BD, Fisher RI, Barrington SF, Cavalli F, Schwartz LH, Zucca E, et al.
- Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-
- Hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014;32(27):3059-68.
- 15. Cheson BD, Pfistner B, Juweid ME, Gascoyne RD, Specht L, Horning SJ, et al. Revised
- response criteria for malignant lymphoma. J Clin Oncol. 2007;25(5):579-86.
- 16. Lee DW, Santomasso BD, Locke FL, Ghobadi A, Turtle CJ, Brudno JN, et al. ASTCT
- 346 Consensus Grading for Cytokine Release Syndrome and Neurologic Toxicity Associated with
- 347 Immune Effector Cells. Biol Blood Marrow Transplant. 2019;25(4):625-38.

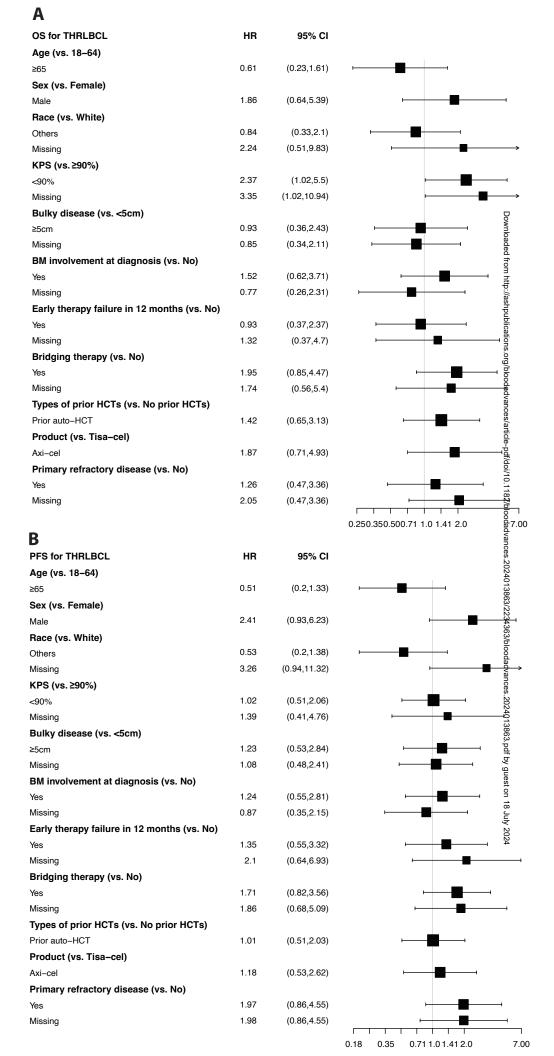
- 348 17. Sorror ML, Maris MB, Storb R, Baron F, Sandmaier BM, Maloney DG, et al.
- 349 Hematopoietic cell transplantation (HCT)-specific comorbidity index: a new tool for risk
- assessment before allogeneic HCT. Blood. 2005;106(8):2912-9.
- 351 18. Schuster SJ, Bishop MR, Tam CS, Waller EK, Borchmann P, McGuirk JP, et al.
- 352 Tisagenlecleucel in Adult Relapsed or Refractory Diffuse Large B-Cell Lymphoma. N Engl J
- 353 Med. 2019;380(1):45-56.
- 19. Jacobson CA, Locke FL, Ma L, Asubonteng J, Hu ZH, Siddiqi T, et al. Real-World
- 355 Evidence of Axicabtagene Ciloleucel for the Treatment of Large B Cell Lymphoma in the United
- 356 States. Transplant Cell Ther. 2022;28(9):581 e1- e8.
- 20. Daniel J. Landsburg MF, Michael Heim, Stephen Ronan Foley, Brian T. Hill, Christine M.
- Ho, Caron A. Jacobson, Samantha Jaglowski, Frederick L. Locke, Ron Ram, Peter A. Riedell,
- Gunjan L. Shah, Leslie L. Popplewell, Ranjan Tiwari, Stephen Lim, Marta Majdan, Aisha
- 360 Masood, Marcelo C Pasquini, Cameron J. Turtle. Real-World Outcomes for Patients with
- Relapsed or Refractory (R/R) Aggressive B-Cell Non-Hodgkin's Lymphoma (aBNHL) Treated
- 362 with Commercial Tisagenlecleucel: Subgroup Analyses from the Center for International Blood
- 363 and Marrow Transplant Research
- 364 (CIBMTR) Registry. Blood. 2022;140(Supplement 1):1584–7.
- 365 21. Major A, Yu J, Shukla N, Che Y, Karrison TG, Treitman R, et al. Efficacy of checkpoint
- inhibition after CAR-T failure in aggressive B-cell lymphomas: outcomes from 15 US institutions.
- 367 Blood Adv. 2023;7(16):4528-38.
- 368 22. Ansell SM, Minnema MC, Johnson P, Timmerman JM, Armand P, Shipp MA, et al.
- Nivolumab for Relapsed/Refractory Diffuse Large B-Cell Lymphoma in Patients Ineligible for or
- Having Failed Autologous Transplantation: A Single-Arm, Phase II Study. J Clin Oncol.
- 371 2019;37(6):481-9.


Table 1: Baseline characteristics of patients who underwent CART for THRLBCL reported

to the CIBMTR June 2015-March 2022 (N=58)

Characteristic	N (%)
Age at CART infusion, years, median (range)	49 (19-76)
Female sex	12 (21)
Race	
White	40 (69)
Black/African American	11 (19)
Other/not reported	7 (13)
Ethnicity	()
Non-Hispanic/Non-Latino	51 (88)
Hispanic/Latino	3 (5)
Other/not reported	4 (7)
Pre-infusion Karnofsky performance status	00 (10)
90-100	28 (48)
70-80	22 (38)
< 60	2 (3)
Not reported	6 (10)
HCT-CI*	47 (00)
0	17 (29)
1-2	19 (32)
3+	19 (33)
Not reported	3 (5)
Bulky disease prior to CART 0 – 5 cm	10 (22)
5 – 10 cm	19 (33)
> 10 cm	13 (22) 4 (7)
Not reported	22 (38)
Bone marrow involvement at diagnosis	12 (21)
Received bridging therapy	12 (21)
No	32 (55)
Yes	18 (31)
Not reported	8 (14)
Lines of prior therapy, median (range)	3 (1-7)
Prior autologous transplant	21 (36)
Prior allogeneic transplant	1 (2)
Product	. (=)
Axicabtagene ciloleucel	40 (69)
Tisagenlecleucel	15 (26)
Lisocabtagene maraleucel	3 (5)
	- \ 7/

3/6	Figure legends:
377	1 - Overall and progression free survival of patients with relapsed THRLBCL treated with
378	CD19-CART in the CIBMTR registry.
379	2 - Univariable analysis of association with (A) OS and (B) PFS
380	OS: overall survival; PFS: progression:free survival; KPS: Karnofsky performance status; Tisa-
381	cel: tisagenlecleucel; Axi-cel: axicabtagene ciloleucel; HCT - Hematopoietic cell transplantation;
382	Allo-HCT allogeneic hematopoietic cell transplantation. Auto-HCT autologous hematopoietic cell
383	transplantation.


Figure 1 Survival

Downloaded from http://ashpublications.org/bloodadvances/article-pdf/doi/10.1182/bloodadvances.2024013863/2234363/bloodadvances.2024013863.pdf by guest on 18 July 2024

Figure 2

